Part Number Hot Search : 
BX3001 60TYFW SRA2219N LPS128 ST7FLI CY14B PEB2086 2SA1832
Product Description
Full Text Search
 

To Download V23990-P630-A44-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  V23990-P630-A44-PM flow 90pim 1 1200v/25a trench fieldstop technology igbt4 for low saturation loss supports design with 90 mounting angle between heatsink and pcb clip-in pcb mounting clip or screw on heatsink mounting industrial drives V23990-P630-A44-PM t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 27 t c =80 c 37 t h =80 c 33 t c =80 c 49 maxim um junction temperature t j max 150 c inverter transistor t h =80c 29 t c =80 c 37 t h =80 c 77 t c =80 c 116 t sc t j 15 0c 10 s v c c v g e =15v 800 v c 17 5 t j max w v ge i cpulse t p limited by t j max a v t j =t j max v ce i c a v t j =t j max p tot a repe t itive peak collector current power dissipation per igbt gate-emitter peak voltage collector-emitter break down voltage maximum junction temperature short circuit ratings dc collector current turn off safe operating area features flow 90pim 1 schematic input rectifier diode target applications 300 a dc forward current surge forward current t j =45c t p =10ms t j =t j max 450 i 2 t types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max a p tot power dissipation per diode w 75 20 12 00 vce 1200v, tj top max 75 1 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter fwd t h =80c 27 t c =80 c 35 t h =80 c 56 t c =80 c 84 brake transistor t h =80c 20 t c =80 c 26 t h =80 c 61 t c =80 c 92 t sc t j 150 c 10 s v c c v g e =15v 800 v brake fwd t h =80c 20 t c =80 c 20 t h =80 c 49 t c =80 c 75 thermal properties insulation properties v is t=2s dc vo ltage 4000 v min 12,7 mm min 12,7 mm cti >200 t j =t j max v 175 w t p l i mited by t j max t j =t j max w a c t j max t j =t j m ax a v p tot i f v rrm i frm t j max a 45 a 45 ga t e-emitter peak voltage maximum junction temperature short circuit ratings v c 20 1200 v ce 1200v, t j t o p m ax turn off safe operating area dc col lector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current maximum junction temperature peak repetitive reverse voltage v 1200 a t j =25c powe r dissipation per diode p tot t j =t j max t j =t j max dc fo rward current i f repetitive peak forward current i frm v rrm v ce i cpuls i c v ge p tot repetitive peak forward current powe r dissipation per diode c maximum junction temperature t j max 175 t j =t j m a x t p limited by t j max dc f o rward current peak repetitive reverse voltage w a a t p limited by t j max -40 + (tjmax - 25) c storage temperature t stg -40+125 c t op co m parative tracking index i n su l a tion voltage creepage distance operation temperature under switching condition clearance 20 50 175 t j =25c 1200 2 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,20 1,5 tj=125c 1,17 tj=25c 0,92 tj=125c 0,81 tj=25c 11 tj=125c 14 tj=25c 0,01 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,14 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1,6 1,96 2,1 tj=150c 2,30 tj=25c 0,0024 tj=150c tj=25c 120 tj=150c tj=25c 127 tj=150c 130 tj=25c 45 tj=150c 46 tj=25c 240 tj=150c 318 tj=25c 68 tj=150c 136 tj=25c 2,61 tj=150c 3,77 tj=25c 1,42 tj=150c 2,45 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,24 k/w tj=25c 1,35 1,86 2,05 tj=150c 1,81 tj=25c 12 tj=150c 16 tj=25c 345 tj=150c 564 tj=25c 2,18 tj=150c 4,68 di(rec)max tj=25c 40 /dt tj=150c 36 tj=25c 0,77 tj=150c 1,74 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,71 k/w 25 25 0 15 15 20 f=1mhz rgon=32 rgon=32 0 erec v ce =v ge v ge(th) v ce(sat) i ces t d(off) r gint t r t d(on) i ges q rr reverse recovery time i rrm t rr reverse transfer capacitance diode forward voltage gate charge input capacitance v f e on e off c rss q gate fall time turn-off delay time turn-on delay time c oss t f c ies turn-on energy loss per pulse conditions slope resistance (for power loss calc. only) rever se current i r characteristic values forward voltage thre sh old voltage (for power loss calc. only) input rectifier diode value 3 0 v f v to r t 30 30 1600 v v m ma a mws c a/ s 1200 25 reverse recovered charge inverter fwd peak reverse recovery current 15 reve r se recovered energy peak rate of fall of recovery current 15 output capacitance turn-off energy loss per pulse gate emitter threshold voltage 0 inverter transistor collector-emitter saturation voltage rgoff = 32 rise time gate-e mitter leakage current integrated gate resistor 0,00085 25 600 600 25 960 25 collector-emitter cut-off current incl. diode 85 115 1430 none v na mws ns pf ns 115 nc v ma v tj=25 c tj=25c 3 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM parameter symbo l unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max condi tions characteristic values value tj=25c 5 5,8 6,5 tj=150c tj=25c 1,6 1,89 2,1 tj=150c 2,28 tj=25c 0,002 tj=150c tj=25c 120 tj=150c none tj=25c 93 tj=150c 97 tj=25c 37 tj=150c 38 tj=25c 199 tj=150c 267 tj=25c 80 tj=150c 131 tj=25c 1,05 tj=150c 1,49 tj=25c 0,86 tj=150c 1,44 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,56 k/w tj=25c 1,35 1,87 2,05 tj=150c 1,79 tj=25c 2,7 tj=150c tj=25c 8 tj=150c 11 tj=25c 317 tj=150c 550 tj=25c 1,20 tj=150c 1,20 di(rec)max tj=25c 51 /dt tj=150c 39 tj=25c 0,49 tj=150c 1,08 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,92 k/w b v incotech ntc reference b-value tol. 3% 3950 tj=25c b-value b (25/50) tol. 3% k b (25/100) tj=25c 3996 k ma v mws mws c v n s a/s a a % 22000 5 -5 2 200 55 t j =25c tj=25c collector-emitter cut-off incl diode gate emitter threshold voltage fall time t d(on) t r turn-off delay time t d(off) turn-on delay time input capacitance q gate reverse transfer capacitance output capacitance c rss c ies e off turn-on energy loss per pulse turn-off energy loss per pulse rise time r gint gate-emitter leakage current integrated gate resistor brake transistor collector-emitter saturation voltage v ge(th) v ce(sat) nc 92 mw/k power dissipation p mw tj=25c rated resistance r power dissipation constant deviation of r100 ? r/r r100=1486 i ges 0 15 15 960 f=1mhz e on t f c oss i ces rgon=32 rgoff=32 v ce =v ge na 0 15 0 v ns pf 15 20 25 diode forward voltage reverse leakage current reverse recovery time peak rate of fall of recovery current peak reverse recovery current reverse recovered charge gate charge 15 rgon=32 thermistor brake fwd reverse recovery energy t rr q rr e rec v f i r i rrm 15 0,00043 600 15 10 1200 1200 600 25 tc=25c tc=100c tj=25c 80 900 4 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 150 c v g e from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 outpu t inverter igbt figure 4 output inverter fwd typical transfer characteristics typical diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v ou t put inverter typical output characteristics 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0,0 0,5 1,0 1,5 2,0 2,5 3,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 v ce (v) i c (a) 5 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 600 v v ce = 6 00 v v ge = 15 v v ge = 15 v r go n = 32 i c = 25 a r g of f = 32 figure 7 outpu t inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 600 v v ce = 6 00 v v ge = 15 v v ge = 15 v r go n = 32 i c = 25 a o ut put inverter e on high t e off high t e on low t e off low t 0 2 4 6 8 10 12 0 10 2 0 3 0 40 50 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 40 80 120 160 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,5 1, 0 1 ,5 2,0 2,5 0 10 20 30 40 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0,5 1,0 1,5 2,0 2,5 0 30 60 90 120 150 r g ( w ) e (mws) 6 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v c e = 600 v v ce = 6 00 v v ge = 15 v v ge = 15 v r go n = 32 i c = 25 a r g of f = 32 figure 11 outpu t inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 600 v v r = 60 0 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v ou tput inverter t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 10 20 30 40 50 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0, 4 0 ,6 0,8 1,0 0 30 60 90 120 150 r gon ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0,2 0,4 0 ,6 0,8 1,0 0 10 20 30 40 50 i c (a) t rr ( m s) 7 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 600 v v r = 60 0 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v figur e 15 outpu t inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 600 v v r = 60 0 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v ou tput inverter i rrm t j = t jmax - 25c i rrm t j = 25c 0 5 10 15 20 25 3 0 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 0 30 60 9 0 1 20 150 r gon ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 4 8 12 16 20 0 1 0 2 0 30 40 50 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 0 10 20 3 0 4 0 50 i c (a) q rr ( m c) 8 rev ision: 2 copyright by vincotech
V23990-P630-A44-PM figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt , di rec /dt = f(r gon ) at at t j = 2 5/1 5 0 c t j = 25/15 0 c v ce = 600 v v r = 60 0 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v figur e 19 outpu t inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd tr ansient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,24 k /w rthjh = 1,01 r thjh = 1,71 k /w rthjh = 1,39 igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,09 2,4e+00 0,07 2,0e+00 0,03 6,7e+00 0,03 5,5e+00 0,17 4,2e-01 0,14 3,4e-01 0,11 1,0e+00 0,09 8,3e-01 0,66 1,1e-01 0,53 8,8e-02 0,36 1,7e-01 0,29 1,4e-01 0,24 2,6e-02 0,20 2,1e-02 0,87 5,6e-02 0,70 4,6e-02 0,08 4,3e-03 0,07 3,5e-03 0,24 1,1e-02 0,19 9,2e-03 0,10 2,3e-03 0,08 1,8e-03 thermal grease phase change interface thermal grease phase change interface output inverter 0 400 800 1200 1600 2000 2400 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt di rec /d t 0 150 300 450 600 750 0 10 20 30 40 50 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt t op (s t z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 9 revi s ion: 2 copyright by vincotech
V23990-P630-A44-PM figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v g e = 15 v figure 23 output inverter fwd figure 24 output inverter fwd power dissipation as a forwar d current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 c t j = 175 c o utput inverter 0 25 50 75 100 125 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) 10 re vision: 2 copyright by vincotech
V23990-P630-A44-PM figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gate v oltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = s ingle pulse i c = 25 a t h = 8 0 oc v ge = 15 v t j = t jmax oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 25 50 75 100 125 q g (nc) v ge (v) 240v 960v 11 revision: 2 copyright by vincotech
V23990-P630-A44-PM figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 1 200 v v c e 1200 v t j 1 75 oc t j = 175 oc fi gure 29 igbt rev erse bias safe operating area i c = f(v ce ) at t j = t j m ax -25 oc u ccm i nus =u ccplus switching mode : 3phase spwm 0 10 20 30 40 50 10 12 14 16 18 20 v ge (v) t sc (s) 0 20 40 60 80 100 120 140 160 180 200 10 12 14 16 18 v ge (v) i c(sc) 0 10 20 30 40 50 60 70 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip 12 re vision: 2 copyright by vincotech
V23990-P630-A44-PM figure 1 brake igbt figure 2 brake igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 2 50 s t p = 2 50 s t j = 2 5 c t j = 150 c v ge from 7 v t o 17 v in steps of 1 v v ge from 7 v t o 17 v in steps of 1 v figure 3 brake igbt figure 4 brake fwd typical transfer characteristics typica l diode forward current as i c = f(v ge ) a funct ion of forward voltage i f = f(v f ) at at t p = 2 50 s t p = 2 50 s v ce = 10 v bra ke 0 10 20 30 40 50 0 1 2 3 4 5 6 v ce (v) i c (a) 0 3 6 9 12 15 18 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 1 2 3 4 5 6 v ce (v) i c (a) 13 re vision: 2 copyright by vincotech
V23990-P630-A44-PM figure 5 brake igbt figure 6 brake igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 600 v v ce = 6 00 v v ge = 15 v v ge = 15 v r go n = 32 i c = 15 a r g of f = 32 figure 7 brake fwd figure 8 brake fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 600 v v c e = 6 00 v v ge = 15 v v ge = 15 v r go n = 32 i c = 15 a b ra ke e rec t j = t jmax - 25c t j = 25c e rec 0 0,3 0,6 0,9 1,2 1,5 0 5 10 15 20 25 30 i c (a) e (mws) e rec t j = t jmax -25c t j = 25c e rec 0 0,3 0,6 0 ,9 1,2 1,5 0 30 60 90 120 150 r g ( w ww w ) e (mws) e off t j = t jmax -25c e on e off 0 1 2 3 4 0 5 10 15 2 0 2 5 30 i c (a) e (mws) e on t j =25c e on e on t j = 25c e off 0 1 2 3 4 0 30 60 9 0 1 20 150 r g ( w ww w ) e (mws) t j =t jmax -25c 14 rev i sion: 2 copyright by vincotech
V23990-P630-A44-PM figure 9 brake igbt figure 10 brake igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f (r g ) with an inductive load at with an inductive load at t j = 25/1 5 0 c t j = 25/15 0 c v ce = 600 v v ce = 6 00 v v ge = 15 v v ge = 15 v r go n = 32 i c = 15 a r g of f = 32 figure 11 brake igbt figure 12 brake fwd igbt transient thermal impedance fwd tr ansient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 1,56 k /w r thjh = 1,26 k /w r thjh = 1,92 k /w r thjh = 1,56 k /w brake thermal grease p hase change interface thermal grease phase change interface t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0 , 10 1,00 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 15 rev i sion: 2 copyright by vincotech
V23990-P630-A44-PM figure 13 brake igbt figure 14 brake igbt power dissipation as a collect or current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 o c t j = 175 oc v g e = 15 v figure 15 brake fwd figure 16 brake fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 17 5 o c t j = 175 oc b rake 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) 16 re vision: 2 copyright by vincotech
V23990-P630-A44-PM figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode tr ansient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 2 50 s d = t p / t r thjh = 2,14 k /w figure 3 recti f ier diode figure 4 rectifier diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 o c t j = 150 oc i nput rectifier bridge 0 20 40 60 80 100 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 17 rev i sion: 2 copyright by vincotech
V23990-P630-A44-PM figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8 0 00 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  18 re vision: 2 copyright by vincotech
V23990-P630-A44-PM t j 150 c r gon 32  r goff 32  figure 1 o utpu t inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v g e (0%) = -15 v v ge (100%) = 15 v v ge ( 100%) = 15 v v c (1 00%) = 600 v v c ( 100%) = 600 v i c ( 100%) = 25 a i c (1 00%) = 25 a t dof f = 0,32 s t d o n = 0,13 s t eo ff = 0,74 s t eo n = 0,51 s figur e 3 output inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c ( 100%) = 600 v i c ( 100%) = 25 a i c (1 00%) = 25 a t f = 0, 14 s t r = 0 ,05 s sw itching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -20 0 20 40 60 80 1 00 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c 10% v ge10% t don v ce 3% -50 0 50 100 15 0 200 3,8 4 4,2 4,4 4,6 time(us) % i c v ce t eon v ge fitted i c 10% i c 90% i c 60% i c 40% -20 0 20 40 60 8 0 1 00 120 -0,1 0,1 0,3 0,5 0,7 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 15 0 200 4 4,1 4,2 4,3 4,4 4,5 time(us) % t r v ce i c 19 rev i sion: 2 copyright by vincotech
V23990-P630-A44-PM figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 14,93 kw p on (100%) = 14,93 kw e off (100%) = 2,45 m j e on (100%) = 3,77 m j t eoff = 0,74 s t eo n = 0,51 s figur e 7 outpu t inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t rr v geoff = -15 v v d ( 100%) = 600 v v ge on = 15 v i d (1 00%) = 25 a v c (1 00%) = 600 v i rr m (100%) = -16 a i c ( 100%) = 25 a t rr = 0 ,56 s q g = 1 73, 9 5 nc switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 8 0 1 00 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -50 0 50 100 1 5 0 200 3,8 4 4,2 4,4 4,6 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -4 0 0 4 0 80 120 4 4,2 4,4 4,6 4,8 5 time(us) % v d fitted i d 20 rev i sion: 2 copyright by vincotech
V23990-P630-A44-PM figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 25 a p re c (100%) = 14,93 kw q rr (100%) = 4,68 c e re c (100%) = 1,74 m j t qrr = 1,17 s t er ec = 1,17 s sw itching definitions output inverter t qrr -150 -100 - 5 0 0 50 100 150 4 4,4 4,8 5,2 5,6 % i d q rr time(us) -20 0 20 40 60 80 100 120 3,8 4,2 4,6 5,0 5,4 time(us) % p rec e rec t erec 21 rev i sion: 2 copyright by vincotech
V23990-P630-A44-PM in datamatrix as in packaging barcode as p630-a44 p630-a44 pin x y 1 53 0 2 46 0 3 39,5 0 4 32,5 0 5 28,1 0 6 18 0 7 15 0 8 12 0 9 9 0 10 3 0 11 0 0 12 0 7 13 3 7 14 8,5 7 15 11,5 7 16 17 7 17 20 7 18 33 7 19 36 7 20 39 7 pin x y pin x y 21 46 7 25 29 28,5 29 52,55 25 22 53 7 26 31,8 28,5 30 52,55 16,9 27 36, 5 28,5 31 52,55 8,6 28 43,5 28,5 32 52,55 2,8 ordering code pin table pin table pin table V23990-P630-A44-PM outline pino u t ordering code & marking ordering code and marking - outline - pinout version with o ut thermal paste 22 re vision: 2 copyright by vincotech
V23990-P630-A44-PM disclaimer life s upport policy as used herein: vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. 23 rev ision: 2 copyright by vincotech


▲Up To Search▲   

 
Price & Availability of V23990-P630-A44-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X